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Beyond the Standard Model

*Why do we need to go Beyond the SM ?
Lecture |

* The Hierarchy Problem: what do we need to solve it !

Lecture 2 eSupersymmetry and the Hierarchy Problem

Lecture 3 «New Dynamics at the TeV scale: the Higgs as a
(pseudo) Nambu-Goldstone Boson
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Beyond the Standard Model |

eStatus of the SM

*Why do we want to go beyond the SM !
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The Standard Model Today

*A gauge theory: SU(3).x SU(2), x U(1)y

3 generations of matter

Coupled through 9, W=, 7" ~
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Gauge Sector

*Couplings of fermions to gauge bosons

>V\MNW determined by gauge symmetry

* Tested with sub-percent precision at LEP, Tevatron, SLD

oo

Oblique Vertex
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Symmetry Breaking Sector

o Mz, My, my require spontaneous symmetry breaking

v2 B 2_|_ /12 1)2
(D,®)" D' => g o W, WS 9~ +97)

5 )
vz

_ (V)
Also Yif1®fr => Yfﬁ

7, 7"

when () = (

But SB sector much more open than gauge sector of the SM
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The Standard Model Today
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The Standard Model Today
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The Standard Model Today
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Oblique Corrections

h 0.5 :I | | 1T 11 | 1T 11 | 1T 11 | | I | 1T 11 | 1T 11 1T 11 1T 11 11 I:
— B 68%, 95%, 99% CL fit contours, U=0 -

0.4 — (SM_: M,=126 GeV, m =173 GeV) —
0.3 — —
0.2 — —
0.1 —
= =

— SM Prediction —
010 M, = 125.7 = 0.4 GeV =
T C m, = 173.18 = 0.94 GeV -

— M -

-0.2 — H —
0 — ™ SM Prediction -
-0.3 — with M, €[100,1000] GeV _T
-0.4 —
_0.5 :I L 1 1 | L1 1 1 | L1 1 1 | L1 1 1 | L 1 1 1 | L1 1 1 | L1 1 1 | L1 1 1 | L1 1 1 | L1 1 I:
05 04 -03 -0.2 -0.1 0 0.1 0.2 0.3 04 0.

S
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The Problem(s) with the Standard Model

|.Where is the scalar sector coming from ?

*EWSB requires Higgs sector

*SM corresponds to minimal choice

Lo = (D,®)" D'+ V(0TD)
with

V(®TD) = —m?dTd + \(DTP)?
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Symmetry Breaking Sector

Higgs mass

my = V 2\

Needs to be mp < O(1) TeV

to unitarize theory with My, My, ~ O(100) GeV
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Where is the Scalar Sector Coming From

eBut what determines m and ) ?

*|s the scalar sector resulting from some underlying dynamics ?

E.g. Superconductivity:
Cooper pairs = (®) # 0

EM broken in the SC

La is the Ginzburg-Landau theory Meissner effect
penetration depth

But microscopic description is BCS
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The Higgs Mechanism and Superconductivity

Electromagnetism in a Superconductor

1
L=~ Fu F" + (O + 2ieA, )P (0, — 2ieA,)® — V (OTD)

Complex scalar field ® with U (1) gauge symmetry

e = 5L =0
Au %AMJr@Moz

At T < T. V(OT®) = —2 07D 4+ \(PTD)?
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The Higgs Mechanism and Superconductivity

Spontaneous breaking of U (1)
At T <T, (?)#0  breaks EM

Photon acquires effective mass in the superconductor

In reality ® is a condensate of electron pairs (Cooper)

€ap ©(2) = (0Yalz) Ps(2)|0)

The Landau-Ginzburg description can be obtained from the

microscopic theory of SC: BCS
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The Problem(s) with the Standard Model
ll.Why is the Higgs so Light ?

mpn not stable under radiative corrections

C determined by SM states: ¢, W=, ZY h
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The Hierarchy Problem

E.s.:The top quark contribution

h h - dp* —dyy U —iyy 4
___Q—-- —(—1)Nc/ (QW)ZLTI[\/? P—m /2 z%—mt]

Contributions from gauge bosons and /. itself have similar form
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The Hierarchy Problem

Renormalization group evolution of the Higgs mass

m7 (100 GeV) = m3 (A) + Am3

UV physics =>m  (A)

. .

SM physics|=>m (100 GeV)

100 GeV T
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The Problem(s) with the Standard Model

But ¢ is determined by SM fields at the EWV scale

Need to adjust bare parameters (e.g. A\, m) to cancel these

(m%bare 16;2 A2) ~ 0(100 GeV)?

—> Need fine tuning for A > 1 TeV

But physics that determines m},..« lives above A

—> Hierarchy Problem
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The Problem(s) with the Standard Model

lll.Why are the fermion masses so different !

Fermion masses come from Yukawa couplings

Y fL®fr
Butwhy Y, ~1  Y.~10"% Y,~10""
Y, ~1072, Y,~10"3 Y;~107°

Y, ~ 1072, Y, ~ 1072, Y., ~10"°

20
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The Problem(s) with the Standard Model

V. How do neutrinos get masses !

If we want m,, from Y, 7V, Prr we need VR

But YVR — 07 TSR — O? Q(VR) =0

—> VR has no SM interactions !

21
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The Problem(s) with the Standard Model

V. How do neutrinos get masses ? (cont.)

If neutrinos are Majorana particles we can have

—m,, U7 vy, + h.c.

From the dim-5 operator

leading to —

New physics scale A ~ O(10'°) GeV to get m,,

22
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The Problem(s) with the Standard Model

. Dark Matter

We know that
QA ~ (.73

QC’DM ~ (.23
Q0 ~ 0.04 } —
* Most of matter Is non-baryonic cold dark matter

* [he SM does not have a suitable DM candidate

* Need new physics beyond the SM to explain CDM

23

Thursday, August 1, 2013



Dark Matter

* Neutral
It DM s a particle e Stable (or long-lived)
* \Weakly interacting (at most)

* Neutrinos: too light and hot
e Axions: very light (m, ~ 10~°eV ), very little interaction

* Weakly Interacting Massive Particles (WIMPs):

m, =~ (1 —1000)GeV

24
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Dark Matter
WIMP Coincidence

¢ [ WIMPs are thermal relics
X + X < SM for I'>H

¢ Freeze out:

for I' < H annihilation of X’s stops

Ny = a”
* WIMP Relic Density:
1
Q, h? = X ™ ~ 3% 10727 em3 57!

Pc <OAU>
25
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Dark Matter
WIMP Relic Density:

|
O, h? = XX ~ 0.1pb - ¢
Pc <UAU>

For a typical weakly interacting particle

&2

(OAV) 5 C Ipb-c for m, ~ 100 GeV
X

—> WIMPS are natural CDM candidates

26
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Other Problems

What'’s the origin of the baryon asymmetry ?
The Strong CP Problem

Not necessarily associated with the
Symmetry Breaking Sector

27
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What Physics Beyond the Standard Model

* Solves a problem:

Origin of the scalar sector
Gauge hierarchy problem

Fermion mass hierarchy

*Experimentally accessible

We'll see it at the LHC or close

28
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Physics Beyond the Standard Model

Organize by origin of Higgs sector or solution to HP

*Supersymmetry:

Higgs is elementary

SUSY protects my,

*Higgs sector is composite:

Technicolor. No Higgs. X
Higgs is a pNGB

29
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Physics Beyond the Standard Model

Gustavo Burdman

University of Sdo Paulo

30
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Beyond the Standard Model

*Why do we need to go Beyond the SM ?
Lecture |

* The Hierarchy Problem: what do we need to solve it !

Lecture 2 eSupersymmetry and the Hierarchy Problem

Lecture 3 «New Dynamics at the TeV scale: the Higgs as a
(pseudo) Nambu-Goldstone Boson

31
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Beyond the Standard Model Il - SUSY

*Supersymmetry: a solution to the Hierarchy Proble

*Basic elements of SUSY theories

*The MSSM

*The MSSM and the Higgs

32
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Supersymmetry and the Hierarchy Problem

Protecting Fermion Masses: Chiral Symmetry

Fermion masses only log divergent. E.g. QED

VY
i

A
3 ;NM/H% e 5m62%m2 ln( )

(s Me

Chiral symmetry protects m, to all orders in PT

0

€

. om. — 0 for m

2. Divergence is logarithmic

33
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Supersymmetry and the Hierarchy Problem

How to protect the Higgs mass ?

Introduce a fermionic partner of the Higgs: Higgsino

Need symmetry to relate Higgs (boson) to Higgsino (fermion)

—> Supersymmetry
Higgs and Higgsino form a SUSY multiplet (H, H)

1

"\\ + h@“ no A dependence if SUSY exact

34
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Supersymmetry and the Hierarchy Problem

What about the top quark A? divergence !
All fermions will have a scalar partner and viceversa

stop quark ¢ forms SUSY multiplet with ¢

~

(t,)

e el .
- -
- ~ -
. .
L} t .

'.. . '.' l.". i~ ‘.'.‘ h
__h.... J’l_- + “..7‘“" + __h__: t :____
>\t At h . Tt T+

/

20 )\; R
No divergences in exact SUSY

35
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Supersymmetric Theories

Complex scalar
Matter in Chiral Supermultiplets:
Weyl fermion

Vector field
Gauge in Vector Supermultiplets:

Weyl fermion

36
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Supersymmetric Theories

SUSY transformations turn scalars into fermions and viceversa

leaving the lagrangian invariant
og =0g= 1
0; = —0;

L =0,¢"0"¢ + i1 5,0"

— 56 = e
with € fermionic anti-commuting infinitesimal change

and 0 = 10"€d, ¢

37
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Supersymmetric Theories

Superspace

Coordinates y" = "

f: two-component Grassmann spinor .

Chiral superfield

— O5H0

O(y) = d(y) + V20¢(y) + 6° F(y)
1

V20 ¢(z)

7

V2

38

= ¢(x) — 000 0, (x) —

620,

4
(

(92;5@@

06" 32<b( )

Dl

0° F(x)
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SUSY in Superspace

*hand — 9" =0 for n>3

o /d29 02 — 1 selects coefficient of {2

e ' =d*0d°0 :>/d46’ selects coefficient of g2 92

*The 9? component of a CSF is a total derivative under SUSY

:>/d26’ W (®) is SUSY invariant

eSame for 2 (2 components = /d49 K(®",®) invariant under
SUSY

39
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SUSY in Superspace

E.g. Kinetic terms in free theory

/d46’ PP — 0,0 0" P + iW&“@Mw + " F + total derivatives
— »Cfree

Superpotential 11/ (®):  Generates interactions through
/ d°OW (®) = Lins,
where W (®) is holomorphic function of ®

40
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SUSY in Superspace

Gauge Superfields

B B B (92 6)_2
Vi = 0010, +i0°0X"T — i6° A" + —— D°

Gauge transformation for gauge superfields

etV ptTATT TV tAT A @ sgauge parameter is superfield

= V* 5V + AT+ A + O(V*AY)

For chiral superfields:

P — e ItA P

4]
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SUSY Interactions

Gauge-invariant kinetic terms
/ Aot ed" V" & = (D,¢) D e+ iptat D,
—V2g [(¢"t"P) A" + AT ($Tt79)]
+g(¢"t"¢) D"

In addition to usual gauge interactions

+ § + :
A X A

42
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SUSY Interactions

Gauge fields kinetic terms: superfield strength
W = —a"0Fy;, (y) — 0°0, D*A*(y) — iX*(y) + 0D (y)
is a chiral superfield

gauge fields

/d29 W (y) W (y) === Kjnetic terms
gauginos

43
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Supersymmetric Theories

Summary

*Gauge and SUSY invariant kinetic terms for matter

/d4(9 O 9" V" @
*Gauge and SUSY invariant kinetic terms for gauge fields
[ oWy we)

*Gauge and SUSY invariant non-gauge interactions

/429 W (®)

44
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Supersymmetry

Supersymmetric extension of the SM

Q, u, d quarks and squarks

L, e leptons and sleptons Chiral Superfields
H,, Hq Higgs and higgsinos
(g,9) gluinos and gluons
(WE0, W=9)  winos and SU(2) gauge bosons Vector
~ Superfields

(B, B) binos andY gauge bosons

45
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Supersymmetry

MSSM

*Interactions still determined by SM gauge
SUB)c x SU(2), x U(1)y

A=A
e

46
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Supersymmetry

*Superpotential

Wassm = Y, QH,, — dY,;QHy — €Y. LH,; + pH, H,

Yy, Y4, Ye Yukawa matrix in flavor space

f term barameters

/
9,9 ,Uy,Vq

47
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Soft SUSY Breaking

*Need to break SUSY softly:

Lo
Weott = —5 (MlBB +M2WW+Mggg+h.c.)
—Q"my Q — Ltm7 L—umZal —dmid —em?eé

d
— (IZL Au QHU — jAd QHd éAe sz hC)

—my, HyH, —m3 HjHy; — (bH,Hy + h.c)

48
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R Parity

* Additional SUSY-preserving terms in the superpotential

Wrpv = a“*Q;L;dy, + BY*L; L&y + v LiH, + 6Y%d;d iy,

they violate B and L !
d, : L (e, 1) (Ve,vy)
pt oS T <
: Yo @ KOt K

0%3 years é ‘a 5| < 107%°

Tp > 1

49
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R Parity

*Introduce new discrete symmetry, M parity

PM _ (_1)3(B—L)

Forbids terms VV that violate B, L

*Equivalent to R parity

Pr = (_1)3(B—L)+23

Superpartners have ’r = —1

SM particles have Pr = +1

50
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R Parity

Lightest Supersymmetric Particle (LSP) is stable

P,=+1
ISP .

decay of LSP forbidden by R parity

A

Typical SUSY WIMP candidate:

~ ~ ~

neutralino: %" admixture of W, B, H

In generic SUSY models is possible to obtain the correct (2,

51
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Implications of m, for SUSY

Superpartner loops cancel quadratic divergences
3m; M? X? X?
2 2 2 | ¢ S\ | ¢ t
m; = m7 cos” 2 - a2 (log <—m%> | M2 (1 M§>>

Mg = \/mz mg, Stop mass scale

Xy =Ar—pcot5  Stop mixing

52
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SUSY Phenomenology

MSSM with R parity conservation

~ A~ ~~>l<

eEg. pp — §GJ, 44", 44 with ¢ —aX] or §—dq

—> jets + FHSS
e Or 3-body decays.E.g. § — qqx}
*Also decays with | or more leptons

*Bounds depend on decay channels/models

53

Thursday, August 1, 2013



SUSY Searches at the LHC

MSUGRA/CMSSM: tan = 10, A = 0, u>0

; 800 : 1 | I 1 L | Il I, ‘I- ;l j | ] I 1 ] I I no1 1 1 I T\‘I 1 1 I ll 1 1 1 :
& o | ATLAS Preliminary- J“-‘L_dt4=5v.8 fb', 15=8 TeV! =
g - O-iepton combined " 3
700 C ¢ 3 \. 9 17°00 Gev) = Observed limit (+1,_°") =
650 ' - - Expected limit (+1c,,) -
600 = 5 1450 corr \ | Observed limit (4.7 fo, 7 TeV) s
- T - Non-convergent RGE I
550 | | =
500 /- =
450 | J
E““-ﬁ\\_.‘, o
400 — o N T e, N
350 | kY | | —
300 :l 1 i-'l_-l \l.-T.T—'l_'_i‘*Tl'T “l"'t-;k—l—l.J_J_l.LLL 1 llll...lh 1. L
500 1000 1500 2000 2500 3000 3500
m, [GeV]
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SUSY Searches at the LHC

MSUGRA/CMSSM: tanf = 10, Ao= 0, u>0

;3000 l‘:. 1 ::'l 1 I 1 I ".l.""l 1 I 1 l 1 ' 1 L I _
3. ¢ —— Observed limit (+10525)
. - -~ Expectedlimit (t15,,) -

% 2500 ATLAS | | o) ]
E Prelimi nary % : - Theoretically excluded 7]
@ N O ~ StaulsP i
= _ -1 _ '... —
8— 2000 j Ldt=5.8fb , 18=8 TeV o.'.“ —
O-lepton combined " -

1500

1000

DO, Run Il tanf} = 3, n<0

500

200 400 600 800 1000 1200 1400 1600 1800
gluino mass [GeV]
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SUSY Searches at the LHC

* Assuming direct decays to jets

Squark-gluino-neutralino model, m(i?) =0 GeV

;2800 : || 1 | I I U-} I . l:‘: I 1 l 1 | || I || || | I I I I I I 1 1 I 1 1 | :
3 - ATLAS Preliminary m
=2600 [— A .
1)) - S8 -
g - i N
g 2400 — L I Ldt=581fb", 1s=8 TeV g
X - 3 _
§ 2200 — gty 0-lepton combined —
o = Y e o SUSY -
- _— -+ -

()] 2000 F N S — Observed limit (_1om°w) -
L \ - -~ Expected limit (+15,,) N

1800 [— 3o — —

- H <l Observed limit (4.7 fb ", 7 TeV) -

1600 :-_. :..-,..7_.m.h i, —_
1200 — —
1000 |— —

8 [~ 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l L 1 1 l L 1 1l l 1l 1 1 n

0
800 1000 1200 1400 1600 1800 2000 2200 2400
gluino mass [GeV]
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SUSY Searches at the LHC

* Assume g — chx(l)

o~ . ~ ~0
dg production; g— q g%

1 1 I l I 1 1 l I

— ATLAS Preliminary

-_J Ldt=581fb, 15=8 TeV

0-lepton combined

-.'.lllllllllllllllllll

- === Expected limit (t1c
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o
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SUSY Searches at the LHC

ATLAS SUSY Searches* -

95% CL

Lower Limits (Status: SUSY 2012)
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3rd gen. squarks
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g mass (m(x

T mass (m(x )= 45 GeV)
L=4.7 fb", 7 TeV [CONF-2012-070] 120-173.GeV.| Tmass (m(x ) = 45 GeV)
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L=4.7 fb™", 7 TeV [CONF-2012-073]
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Stable g g R-hadrons : Full detector
Stablet R-hadrons : Full detector
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....................................... GMSB : stable .
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Bilinear RPV : 1 lep +j's + E

BC1 RPV '4 lep + E
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5 Hypercolour scalar gluons : 4 jets, m;=m,,
g Spin dep. WIMP interaction : monOJet+E

..... Spin indep. WIMP interaction : monojet +E7 e,

M*

T,miss

g mass (m(x )< 150 GeV)
g mass (m(x )<3oo GeV)
g mass (any m(x )<m(g))

g mass (m(x ) =60 GeV)
b mass (m(x )<150 GeV)

tmass (m(x)—O)
230-440 GeV | tmass (mGz)) =0)
298-305 GeV | tmass (m(x) 0
tmass (115<m(x)<2306eV)

t mass

(5 <tanp < 20)

Gmass (3.0x10° <.
L=4.6 fb™, 7 TeV [ATLAS-CONF-2012-110] ' 100-287.GeV. Sgluon mass (incl. limit from 1110.2693)

M* scale (m, <100 GeV, tensor D9, Dlracx)
|

I~IIIIIII| | |

q=gmass
J=gmass f Ldt = (1.00 - 5.8) fb”"
gmass (m(@) <2TeV, Ilghtx )
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9 mass (tanf < 15) ATL_AS
§ mass (tan >20) Preliminary

g mass (m(x ) > 50 GeV)
g mass (m(x )<300 GeV)
g mass (m(x ) < 400 GeV)
(o] mass (m(x ) =60 GeV)

g mass (m(x ) <300 GeV)
g mass (m(x )< 50 GeV)

)= 2m(x )

) =0, m(iy) --(m(x )+m(x 0

(m(x )= m(x ), m(x )=0, m(Iv) as above)
ns)

g mass

g mass ((g)> 10 ns)

V. Mmass (i, =0.10, 2;,,=0.05)
gmass (cr,g, <15 mm)
g mass

<1 5x10'5, 1 mm < ct <1 m,g decoupled)

211

scale (m, <100 GeV, vector D5, Diracy)

10"

*Only a selection of the available mass limits on new states or phenomena shown.
All limits quoted are observed minus 1o theoretical signal cross section uncertainty.
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Hiding SUSY

Why haven’t we seen it !

*Compressed Spectrum

miss.

Not enough £+

*R-parity Violation

miss.

LSP not stable. Different decay modes. Not enough £

eNatural SUSY

Light higgsinos, 3rd. gen. squarks
Everybody else heavy
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Natural SUSY

Naturalness only requires Higgsinos, stops and gluinos to be “light”

cooozmzeees Qg 045,400, 1
WA bp
B
W
| TeV + >
t.
fER
By oo
u 4+ H
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Natural SUSY

It’s hard to produce light stops

10 = | I L I L ] | I | I | I | Pﬁofp}n?%;

" 6, [pbl: pp — SUSY VS =7TeV ]

L F =

10 — —E

a2l 55 J

10 A N

3| %390 |

10 I | I I | I I | I | I | I L1 11 I L1 11 | I I | | I |

100 200 300 400 500 600 700 800 900

Myyerage [GEV]
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Hiding SUSY

Stop limits

£ , production: - b+, 1> W ’+x (BR=1, m; <200 GeV); - t+x (BR 1, m, > 200 GeV)

S‘ T B8 bl 4 Rl T l B ol s R oo 8 Baod, K. Bt Lhed isf ; I T | ﬁ T T | D I
) 200 ~ ATLAS Observed limits (-16325Y) f,— boy.‘,z’_. w' *Z, (m <200 GeV)
O) —— Observed limits (nominal) g 2fevton (m = 106 GeV)
-1 ’ J2- =
1 e .[ Ldt=4.7fb \s=7 TeV ---- Expected limits (nominal) §Sms 1/2eptons + bjets (m,, = 106 GeV) |
ON" 80 - 1/2-leptons + b-jets (m_ =2xm.) _ |
E' =5 Statss September 2012 All limits at 95% CL, R - z &
= [, — 145 (m. > 200 GeV) <t
160 — b =
/ y O-lepton
= § \ === 1tdepton =1
o \ _ \ )
140 = ,,‘1““ ‘ /,/\\ ,- 2-epton —

m, > m,. (= 106 GeV) &~

1 l M1/ 1 1L l 1

150 200 250 300 350 400 450 500 550
m, [GeV]

Finding Natural SUSY is hard
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Implications of m, for SUSY

Superpartner loops to make Higgs heavier
3m; M?Z X? X?
2 9 2 | ¢ S\ | ¢
m; = m7 cos” 2 - a2 (log <—m%> | M2 (1 Mé))

Mg = \/mz mg, Stop mass scale

Xy =Ar—pcot5  Stop mixing
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SUSY and the Higgs

3m
A2

> cos” 23 1

m; =m

0
Xt/MS

—_—

Draper, Meade, Reece, Shih 12

v o v o w o
@\ @\ — —
guey
=
D)
@)
0 10
— am
| /\
< &)
m -
S
~+~

For
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SUSY and the Higgs

For fixed tan 8 = 30

{Xt > 1 TeV

Mg > 500 GeV 05

—> Trouble for GMSB:

pressure on Mp,ess to be large

to get large enough superpartner masses
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Beyond the MSSM

Problem in the MSSM:

2 12
Vi, ) =SS a2 2 = my = M cos®(2)

NMSSM  Add a singlet chiral superfield
As S H, Hy

<S> =vs = Asvs HyHyg gives [, term

i \2 172 72
and an extra quartic \¢ H- H;

=  m; = Mz cos*(28) + A5 v° sin®(28) +
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SUSY - Conclusions/Outlook

*SUSY is a beautiful solution to the Hierarchy Problem

* The MSSM spectrum is highly constrained if we want
Th@ S 0(1) TeV
e But natural spectrum very much viable

* Bottom-up approach: look for natural SUSY signals if we
really want to exclude SUSY

*The measurement of m; posses additional constraints.

*Extensions of the MSSM (NMSSM, extended gauge sectors)

should be explored, as long as they remain natural solutions
to the HP
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Physics Beyond the Standard Model 3.1

Gustavo Burdman

University of Sdo Paulo

CERN - Latin American School of High Energy Physics

Arequipa, Peru, March 6-19 2013
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Beyond the Standard Model

*Why do we need to go Beyond the SM ?
Lecture |

* The Hierarchy Problem: what do we need to solve it !

Lecture 2 eSupersymmetry and the Hierarchy Problem

Lecture 3 «New Dynamics at the TeV scale: the Higgs as a
(pseudo) Nambu-Goldstone Boson
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Beyond the Standard Model Il

* Solve the Hierarchy problem with dynamics: QCD and the o
(Technicolor, ...)

* Dynamical (composite) light Higgs: is a (pseudo) Goldstone boson
The example of the pion in QCD

*Composite Higgs Models:

Little Higgs
Twin Higgs
Gauge-Higgs unification in AdS5
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Where is the Scalar Sector Coming From

eBut what determines m and ) ?

*|s the scalar sector resulting from some underlying dynamics ?

E.g. Superconductivity:
Cooper pairs = (®) # 0

EM broken in the SC

La is the Ginzburg-Landau theory Meissner effect
penetration depth

But microscopic description is BCS
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Physics Beyond the Standard Model

Organize by origin of Higgs sector or solution to HP

*Supersymmetry:

Higgs is elementary

SUSY protects my,

*Higgs sector is composite:

Technicolor. No Higgs. X
Higgs is a pNGB
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Composite Scalars: the Example of QCD

Spontaneous breaking of chiral symmetry in QCD

QCD with 2 flavors:

Locp = QLi PQL+ Qri PQr — QL MQg + h.c.

u m, 0O
QZ(d) M:(O md)

If M =0, is invariant under SU(2); x SU(2)r

with

* 03 4.3 a og?
Q — €T QL " 1" ==, a=123
- 343 Wi
QR > et QR /@ pa
, " free parameters
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Chiral Symmetry Breaking

SU(3). asymptotically free :

g(E)

'
!
|
|
!
A

At low energies, A\ ~ Aqcp, quark condensation

e Quarks acquire a dynamical mass

mQ ~ AQCD
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Chiral Symmetry Breaking

*3 broken generators = 3 NGBs (7,7, ")

Since SU(2)r, x SU2)gr = SU(2)y x SU(2)a — SU(2)y
Axial current 77 = Qv Q
does not annihilate the vacuum

(017 |7 (Pu)) = i fr D 0

But still conserved if M, = 0

0" jff — fﬂm?r
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Spontaneous Breaking of Chiral Symmetry

Linear ¢ model

1 ; 1A ; A FT 2
L= Tr[0,210"%] + = Tr [N1%] - T (Tr [27%])

with X = o +it%r? and Y S LTYR

2 _ /,u2

Spontaneous breaking of chiral symmetry

i mg:\/ﬁv
m. =0
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Spontaneous Breaking of Chiral Symmetry

In real QCD:

my ~ 'y ~ O(1) GeV Cutoff of the effective theory

o is not a low energy state (too broad to be observable)

o my, mq 70 => Explicit symmetry breaking
My # 0 7’s are pseudo NGBs

But still light
m, ~ 0.14GeV < O(1) GeV
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GeV vs. TeV Scales

Build a TeV-scale model of EWSB in analogy with QCD

Two avenues:

* Fermionic sector breaks EWS just as in QCD

Higgs (o) is not is the light spectrum

* Strong sector breaks global symmetry

Higgs is a (pseudo) NGB remnant

just like the 7’5
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Strong Dynamics at the TeV Scale

Scaled up OCD

*New gauge interaction

*Strong at the TeV scale

*Breaks EWVS by

(FF) #0

A ~1TeV
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Basic Technicolor Model

* Asymptotically-free interaction SU (N7 )

*New fermions: SU(2); doublet

T
QL — ( B > (NT71727YQ)
L
TR (NT71717YT)
BR (NT71717YB)

At A we have <QLQR> # 0

Spontaneous breaking of global SU(2);, x SU(2)r
=X

Also SB of the gauge SU(2);, x U(1)y — U(1)gm
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Higgs Mechanism without a Higgs

SU(2)p x SU(2)gr — SU(2)y —> 3 Nambu-Goldstone bosons

NGBs eaten as gauge boson longitudinal polarizations

W, W, W, i,
ANNVNVVVVVNYG - 2 VNNV - — - — - e AVAVAVAVAV
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Fermion Masses without a Higgs

Need extended interaction mixing SM fermions with tfermions

<F >

Q%TC Fr i 9]%:'1“(3 3
ETC
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Extended Technicolor

ETC requires more techni-fermions

( g ) Th, Bl techni-quarks
L

( Jlg ) Ng., Ep techni-leptons
L

* Number of doublets higher Np =4
Problems with EWPC

* Larger chiral symmetry broken SU(8); x SU(8)r — SU(8)y
63 -3 = 60 NGBs left in the spectrum!
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Flavor Violation from ETC Interactions

ETC leads to tree-level flavor violation

—> effectsin (K" — K°), (B" — BY), mixing, ...
—> Mgrc > 1000 TeV

But M T cannot be too large or it would suppress

My, Mp, M too much
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Walking Technicolor and Separation of Scales

To get heavier masses need to enhance TC condensate

Near-conformal behavior of TC interaction
Coupling walks

But walking takes long time for coupling to become super-critical

—> Walking generates large separation of scale
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Electroweak Precision Constraints

For the simple scaled up QCD scenario

F
g N+ Np
i o7
F

0.4
0.3
0.2
0.1

-0.1
-0.2
-0.3
-0.4
-0.5

B 68%, 95%, 99% CL fit contours, U=0
(SM_ : M,=126 GeV, m =173 GeV)

SM Prediction

M,, = 125.7 = 0.4 GeV

m, = 173.18 = 0.94 GeV

M
™ SM Prediction

with M, €[100,1000] GeV

S is very large in QCD-like models
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New ldeas in Techni-Color Models

e Minimal Walking Technicolor (F. Saninno et al.)
Nr =2, Np =1
No flavor theory

Not clear how to get a light Higgs
Can be modeled in AdSx

e Conformal Technicolor (M. Luty et al. )
Strong sector is near a conformal fixed point in the UV

Explicit conformal breaking — FWSB

First basic models accommodate light Higgs as pNGB
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Higgs is a pseudo Nambu-Goldstone Boson

Back to the analogy of QCD at low energies

* Build models where the Higgs is like 7 instead of o

Need to break global symmetry spontaneously

Number of NGBs: 3 +3 -3=3 (7% n—, =%

) )

*Explicit symmetry breaking:

2 _
m.,. = Bom,

gives mass to the NGB
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Higgs isa pNGB

Y =QCh LI =2
4o f
Ay m,, m_N, ... [ 11701 PO
m_ m, N i
A7
Electroweak

QCD
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Physics Beyond the Standard Model 3.2

Gustavo Burdman

University of Sdo Paulo

CERN - Latin American School of High Energy Physics

Arequipa, Peru, March 6-19 2013
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Beyond the Standard Model

*Why do we need to go Beyond the SM ?
Lecture |

* The Hierarchy Problem: what do we need to solve it !

Lecture 2 eSupersymmetry and the Hierarchy Problem

Lecture 3 «New Dynamics at the TeV scale: the Higgs as a
(pseudo) Nambu-Goldstone Boson
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Beyond the Standard Model 111.2

* Solve the Hierarchy problem with dynamics: QCD and the o
(Technicolor, ...)

* Dynamical (composite) light Higgs: is a (pseudo) Goldstone boson
The example of the pion in QCD

*Composite Higgs Models:

Little Higgs
Twin Higgs
Gauge-Higgs unification in AdS5
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Higgs is a pseudo Nambu-Goldstone Boson

Back to the analogy of QCD at low energies

* Build models where the Higgs is like 7 instead of o

Need to break global symmetry spontaneously

Number of NGBs: 3 +3 -3=3 (7% n—, =%

) )

*Explicit symmetry breaking:

2 _
m.,. = Bom,

gives mass to the NGB
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Higgs isa pNGB

Y =QCh LI =2
4o f
Ay m,, m_N, ... [ 11701 PO
m_ m, N i
A7
Electroweak

QCD
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Higgs as a pNGB: Little Higgs Mechanism

oIf the Higgs is (part of) a NGB then m; =0 and
it can only have derivative interactions:

invariance under h — h+c¢  shift symmetry

°|n the SM SU(Q)L X U(l)y — U(l)EM
# NGBs = # of broken generators = 3

But they’re all eaten by 17", 7

*To have NGBs left over need

Global symmetry > Gauge symmetry
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Little Higgs Mechanism

*The spontanous breaking of a global symmetry
gives massless NGBS

One of them: doublet of SU(2);, &

* But we need to give h a mass

—> Need explicit breaking of global symmetry

i mh;é()
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Simplest Little Higgs
Try with global symmetry SU(3) — SU(2)

*# of broken generators =8 -3 =5
* OK.We need 4 d.of.for h
* Explicit breaking to get m;, # 0

If we gauge part of SU(3) (e.g. SU(2))
we break explicitly SU(3) global —> quadratic divergences

If we gauge all of the SU (3)

Global symmetry is respected.

But now all of the NGBs are eaten
to give masses to gauge bosons.
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Simplest Little Higgs

Solution: Enlarge the global symmetry to S{/(3) x SU(3)
SU(3) x SU(3) — SU(2) x SU(2)

# of broken generators = 16 -6 = |0

But 5 eaten in the gauge breaking S/ (3) — SU(2)
So in the end: 5 NGBs left
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Simplest Little Higgs

L =|Du® |+ |D, @,

0 0
d, =T | 0 By=e T 0
f f

0 0 M~y
T=7%"=n/vV2+| 0 0 ho
Bt Ry 0

with

and

hl
( h2 ) =h SU(2)r, doublet
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Simplest Little Higgs

Gauge interactions do respect global symmetry
L =D& " + |D,®,°
They do lead to quadratic divergences, from terms like

A, AF (@{@1 + @{q)l)

g* g*

N A’ (@’{@1 +<1>§<I>.2) = 5N (£2+ £

But they do notinduce and /Th  term

Do not contribute to m;
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Simplest Little Higgs

But at one loop we generate operators like <I>]£<I>2

0 0
b, =T | 0 Py = e 0
f f

that will depend on £

D

o

Two boson propagators —> only logarithmic divergence
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Simplest Little Higgs

4 2 4 2
g A . g A
= In (F) |(I>I (I>2|2 : dm? o~ = In (F) 72
—> generates My ~ ——
47
IV =7
4m

just as we needed

m

h

102
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Simplest Little Higgs

But how are the quadratic divergences cancelled ?

W Wy

Heavy gauge bosons cancel W quadratic divergence
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Simplest Little Higgs: Fermions

We choose am anomaly-free model. Quarks:

d S
‘I’Ql — u ~ (3*a0)> ‘IIQQ — C ~ (3*30)1
D L S L
t
Vo, = b ~ (3,1/3),
T L

and right-handed singlets

UR, CR, tr ~ (192/3)7 dR') SR, bR ~ (1’_1/3)7

Tr ~ (1,2/3) Dg, Sr ~ (1,—1/3)

|04
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Top Cancellation
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Little Higgs
Electroweak Symmetry is broken radiatively
8V = ém* hTh + X (h'h)?

Tension: get a light Higgs with large enough |
EWPC want [z 2Tev

Many models other than this:
Littlest Higgs: SU(5)/S0O(5) with SU(2) x SU(2)

T Parity: Better agreement with EWPC, Dark Matter

All require new fermions and new gauge bosons at [
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Other pNGB Higgs Models

Twin Higgs
Gauge-Higgs unification in AdSs

In all cases Higgs is composite
Higgs couplings to SM particles is suppressed

by powers of v

|07
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Separation of Scales in AdS;

*One compact extra dimension. Non-trivial metric induces a small energy
scale from a high one. (Randall, Sundrum ’99)

Planck \ TeV
M —kL

M, ]

N

>
L

* Geometry of extra dimension generates exponential hierarchy

Atev ~ Mplanck e_k L
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Separation of Scales in AdSs

* Warped 5D metric in RS

ds?® = e 2kIYl n*dx,dz, — dy?

e Compactified on orbifold S1/Z2 with [. = 7R
and Lk the AdS5 curvature

*Hierarchy problem: for k2 ~ (11 — 12)

ke " ~ O(1) TeV
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The Hierarchy Problem in AdS

oIf Higgs is localized in IR braneat y = 71X

TR
s = [ e [ty gty —nm) g ()
0
*Warp factor ¢ appears in Jurand /—g

Sy = / dtx {G_QkWRnﬂyé’“HT(?”H — e ARTRN (|H|2 — 08)2}

* Canonically normalize Higgs

PRRALELY = QN &

|10
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Hierarchy Problem in AdSs

Sy = / d*x [nuyé’ﬂHTayH — A (‘H‘Q — 6_2]{7TR08)2}

olf vo=~ Mp, choosing kR~ O(10) gives
v ~ weak scale

—> Higgs must be at or near IR brane
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Bulk Fields in AdS

Bulk AdS models require

*Enlarge gauge symmetry to include custodial symmetry in bulk
to avoid large T parameter

eMinimal choice: SU(2);, X SU(2)p x U(1)x

*Expand bulk theory in Kaluza-Klein modes.
Get effective 4D theory
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Gauge Fields in AdS Bulk

*Gauge fields zero-modes are flat by gauge invariance
*KK modes have |IR-localized wave functions

M, ~ (n—0(1)) x Tke "8

with masses starting at the TeV scale
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Fermion Fields in AdS Bulk

*Massive fermion in curved 5D space

B 4 E_AM _% B _
Sf— d:z;dy\@ Q\If’y DM DM \ Mf\If\If

To be natural M;~O(1)k

Mf — ka with ¢ =~ 0(1)

*The parameter ¢y determines the localization of the ZM fermion

| 14
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Fermion Fields in AdS Bulk
*E.g.: Localization of left-handed ZM

1 -
F%M(y)szé(o)eb ) ky

1 ) .
cr > 5 = /M fermion localized near Planck brane

1 . .
cr, < 5 = ZM fermion localized near IR brane
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Fermion Fields in AdS Bulk

*O(l) flavor breaking in bulk can give fermion mass hierarchy

C>1/2 C<1/2

Fermions localized near TeV brane have O(|) Yukawas

Those localized near the Planck brane have highly suppressed Yukawas

16
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Dynamical Localization of the Higgs

* Gauge-Higgs unification: gauge filed in 5D has scalar As

*To extract Higgs from As need to enlarge gauge symmetry

E.g.: SU(3) — SU(2) x U(1) broken by boundary conditions

Al
T
]
Lo
N——

—~
|
|

~—

~—~

_I_

~» - -

x

—> Higgs doublet from A5 = Ay t"

~—~
|
|
~—
—~

>
~/
R
NP
+
W
T+ =+
Lz
N~ —
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Dynamical Localization of the Higgs

*In the dual 4D theory equivalent to Higgs as a NGB

gauge symmetry in bulk As — As + 9y X
—> shift symmetry in 4D

Higgs is a (p)NGB

|18
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The Flavor Problem in Ad55

*KK gauge bosons couple stronger to heavier fermions

KK Gauge Bosons

T~

light fermions heavy fermions

—

0 L

* Tree-level flavor violation is hierarchical.
only important with heavier generations.

119

Thursday, August 1, 2013



The Flavor Problem in Ad55

eFlavor bounds OK from most observables in K,D and
B physics

* But one flavor observable is tough: €x

mixed chirality operators dp sy d; sp

2
™m
have large enhancement ( K) ny =~ 100

= M > 0(10) TeV
*Requires flavor symmetries in the bulk
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Conclusions

* Composite light Higgs require symmetry to protect m,
from being at the TeV scale ( )

*Models of pNGB Higgs generally work
require new global and gauge symmetries at f

Imply the existence of many new states above f

*They also imply a new strong interaction above 4 f

*They replace a renormalizable theory with a

non-renormalizable one ... but we’ve seen this before.
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