Strongly Coupled Theories of the Electroweak Scale

Gustavo Burdman

University of São Paulo

EWSB&LHC@IPhT, Saclay, October 27-29 2008

- 4 同 ト 4 ヨ ト 4 ヨ

Outline

1 Why we need to go beyond the SM

- The Standard Model
- The Stability of the Weak Scale

2 Strong Dynamics and the TeV Scale

- The Example from QCD
- QCD-like Strong Dynamics
- A New View of Strong Dynamics: the AdS/CFT Correspondence

3 Models of EWSB in AdS₅

- Solving the Hierarchy Problem in AdS₅
- Models of EWSB and Fermion Masses in AdS₅

4 Summary/Outlook

同 ト イ ヨ ト イ ヨ ト

The Standard Model The Stability of the Weak Scale

The great success of the SM

The Standard Model success

The SM Higgs is light

 $m_h < 190 \text{ GeV } @ 95\% \text{ C.L.}$

< 日 > < 同 > < 三 > < 三 >

э

The Standard Model The Stability of the Weak Scale

The Stability of the Weak Scale

But if Higgs elementary scalar quantum corrections drive m_h up

$$\delta m_h^2 \sim \frac{c^2}{16\pi^2} \Lambda^2$$

- We need \Rightarrow $m_h \lesssim 1$ TeV
- But if $\Lambda \to M_P \sim 10^{19}~GeV$, unnatural

 \Rightarrow Gauge Hierarchy Problem

< ロ > < 同 > < 回 > < 回 >

The Standard Model The Stability of the Weak Scale

Mechanism to Stabilize the Weak Scale

Need a mechanism to keep v and M_P separate.

New physics at $\Lambda \sim 1$ TeV is:

Weakly Coupled

- SM with a light Higgs
- SUSY (MSSM, NMSSM, Folded, ...)
- Little Higgs, Twin Higgs

LED, UED

Strongly Coupled

- Technicolor, Walking Technicolor
- Topcolor, Top See Saw

・ロト ・同ト ・ヨト ・ヨト

- Composite Higgs
- Randall-Sundrum

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Spontaneous Chiral Symmetry Breaking in QCD

E.g. 2 flavors

$$\mathcal{L}_{\text{QCD}} = \bar{Q}_L \, i \, \not\!\!D Q_L + \bar{Q}_R \, i \, \not\!\!D Q_R - \bar{Q}_L \, M Q_R + \text{h.c.}$$

with

$$Q = \begin{pmatrix} u \\ d \end{pmatrix} \qquad \qquad M = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix}$$

If M = 0, invariant under $SU(2)_L \times SU(2)_R$

$$\begin{array}{rcl} Q_L & \longrightarrow & e^{i\ell^a t^a} \, Q_L \\ Q_R & \longrightarrow & e^{ir^a t^a} \, Q_R \end{array}$$

< 日 > < 同 > < 三 > < 三 >

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Spontaneous Chiral Symmetry Breaking in QCD

At low energies, $\Lambda \sim \Lambda_{\rm QCD},$ quark condensation

$$\langle \bar{Q}_L Q_R \rangle \neq 0$$

 $\Rightarrow SU(2)_L \times SU(2)_R \longrightarrow SU(2)_V$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Spontaneous Chiral Symmetry Breaking in QCD

- Dynamical quark mass: $m_Q \simeq \Lambda_{\rm QCD}$
- 3 Broken generators \Rightarrow 3 NGBs: (π^+, π^0, π^-)

Since $SU(2)_L \times SU(2)_R = SU(2)_V \times SU(2)_A \longrightarrow SU(2)_V$ Axial current does not annihilate vacuum

$$j^{5a}_{\mu} = ar{Q} \gamma_{\mu} \gamma^5 Q$$

defines

$$\langle 0|j^{5a}_{\mu}|\pi^{b}(p_{\mu})
angle=if_{\pi}\,p_{\mu}\delta_{ab}$$

But still conserved if $m_{\pi} = 0$.

- 同 ト - ヨ ト - - ヨ ト

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Spontaneous Chiral Symmetry Breaking in QCD

Scaling:

•
$$\langle \bar{Q}Q \rangle \sim N_c \Lambda_{\rm QCD}^3$$

•
$$f_{\pi} \sim \sqrt{N_c} \Lambda_{\rm QCD}$$

Explicit Symmetry Breaking:

•
$$M \neq 0 \Rightarrow m_{\pi} \neq 0$$

• $\partial^{\mu} j_{\mu}^{5a} = f_{\pi} m_{\pi}^2$

< 日 > < 同 > < 三 > < 三 >

э

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Strong Dynamics at the TeV Scale

Analogy with QCD:

- New Strong Interaction: Technicolor
- Strong at $M_W \ll M_P$
- Breaks Electroweak symmetry: $\langle \overline{F}F \rangle \neq 0$

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Basic Technicolor Model

Assume

- Assymptotically-free new interaction: $SU(N_T)$
- New fermions: $SU(2)_L$ doublet of techni-fermions

$$Q_L = \begin{pmatrix} T \\ B \end{pmatrix}_L \qquad (N_T, 1, 2, Y_Q)$$

$$T_R \qquad (N_T, 1, 1, Y_T)$$

$$B_R \qquad (N_T, 1, 1, Y_B)$$

• At Λ_{TC} we have $\langle \bar{Q}_L Q_R \rangle \neq 0 \qquad \Rightarrow$

- Spontaneous breaking of global $SU(2)_L \times SU(2)_R$
- But also SB of gauge symmetry $SU(2)_L imes U(1)_Y$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Basic Technicolor Model

Higgs Mechanism:
$$SU(2)_L \times SU(2)_R \longrightarrow SU(2)_V$$

3 massless Nambu-Goldstone bosons

$$U = e^{i\pi^a \sigma^a / F_T} \qquad \qquad U \longrightarrow L U R^{\dagger}$$

and

$$\frac{F_{T}}{4} \operatorname{Tr} \left[\left(D_{\mu} U \right)^{\dagger} D^{\mu} \right] \longrightarrow \qquad \frac{gF_{T}}{2} W_{\mu}^{+} \partial^{\mu} \pi^{-} + \frac{gF_{T}}{2} W_{\mu}^{-} \partial^{\mu} \pi^{+} + \frac{F_{T}}{2} \left(gW_{\mu}^{3} + g'B_{\mu} \right) \partial^{\mu} \pi^{0}$$

with

$$\langle 0|j^{5a}_{\mu}|\pi^{b}
angle = iF_{T}p_{\mu}\delta_{ab}$$

< 日 > < 同 > < 三 > < 三 >

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Technicolor Model – Gauge Boson Masses

NGBs eaten as gauge boson's longitudinal polarizations

$$W_{\mu}$$
 W_{ν} W_{μ} W_{ν}

$$\Rightarrow \qquad i\frac{g^2 F_T^2}{4} \left(g_{\mu\nu} - \frac{q_\mu q_\nu}{q^2}\right)$$

- 4 同 6 4 日 6 4 日 6

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Technicolor Model – Scales

From Pagels-Stokar formula (or Nambu–Jona-Lasinio model)

$$F_T^2 \cong \cdots \otimes N_T$$

More generally, if N_D doublets

$$v = \sqrt{N_D} F_T = f_\pi \sqrt{\frac{N_T N_D}{N_c}} \frac{\Lambda_{\rm TC}}{\Lambda_{\rm QCD}}$$

E.g. for $N_D = 1$, $N_T = 3 \Rightarrow \Lambda_{\mathrm{TC}} \simeq 800$ GeV

< 日 > < 同 > < 三 > < 三 >

-

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Fermion Masses – Extended Technicolor

Need to enlarge TC \longrightarrow Extended Technicolor (ETC)

- $G_{\rm ETC} \supset G_{\rm TC}$
- ETC interactions involve fermions and techni-fermions
- \bullet ETC broken at $\Lambda_{\rm ETC} \gg \Lambda_{\rm TC}$

Fermion masses from

$$-\frac{g_{\rm ETC}^2}{M_{\rm ETC}^2}\,\overline{f}f\,\overline{T}\,T\qquad\Rightarrow\qquad$$

$$m_f \sim rac{g_{
m ETC}^2}{M_{
m ETC}^2} \, \Lambda_{
m TC}^3$$

イロト イポト イヨト イヨト 二日

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

ETC Requires more realistic ETC Models

E.g. <u>Farhi-Susskind</u>:

Need $SU(3)_c$ color-triplet and color signlet techni-fermions

 $\begin{pmatrix} T^{i} \\ B^{i} \end{pmatrix}_{L} \qquad (N_{T}, 3, 2, y) \\ \begin{pmatrix} N \\ E \end{pmatrix}_{L} \qquad (N_{T}, 1, 2, -3y) \\ T^{i}_{R} \qquad (N_{T}, 3, 1, y + 1) \\ B^{i}_{R} \qquad (N_{T}, 3, 1, y - 1) \\ N_{R} \qquad (N_{T}, 1, 1, -3y + 1) \\ E_{R} \qquad (N_{T}, 1, 1, -3y - 1) \end{cases}$

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

ETC Requires more realistic TC Models

- Condensates: $\langle \bar{T}_L^i T_R^i \rangle = \langle \bar{B}_L^i B_R^i \rangle = \langle \bar{N}_L N_R \rangle = \langle \bar{E}_L E_R \rangle \sim \Lambda_{\rm TC}^3$
- $\Rightarrow v^2 = 4 F_T^2$
- Chiral Symmetry is now $SU(8)_L \times SU(8)_R$ (gauge couplings $\longrightarrow 0$
- \bullet \Rightarrow 63 3 = 60 NGB's in the spectrum !

Back to ETC

- ETC gauge boson exchange leads to
 - Four technifermion operators

$$\frac{\alpha_{ab}}{\Lambda_{\rm ETC}^2} \left(\bar{T} \gamma_{\mu} \hat{t}^a T \right) \left(\bar{T} \gamma^{\mu} \hat{t}^b T \right) \qquad \Rightarrow \qquad M_{\tilde{\pi}}$$

QCD-like Strong Dynamics

• Mixed four-fermion operators

$$\frac{\beta_{ab}}{\Lambda_{\rm ETC}^2} \left(\bar{T} \gamma_{\mu} \hat{t}^a f \right) \left(\bar{f} \gamma^{\mu} \hat{t}^b T \right) \qquad \Rightarrow \qquad m_f$$

• Four-fermion operators

$$\frac{\gamma_{ab}}{\Lambda_{\rm ETC}^2} \left(\bar{f} \gamma_{\mu} \hat{t}^a f \right) \left(\bar{f} \gamma^{\mu} \hat{t}^b f \right) \qquad \Rightarrow \qquad {\rm FCNCs}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Bounds from FCNCs in ETC Models

From γ terms

$$\frac{\gamma}{\Lambda_{\rm ETC}^2} (\bar{s}\gamma^5 d) (\bar{s}\gamma^5 d) \qquad \Rightarrow \qquad {\rm Contributes \ to} \ {\cal K}^0 - \bar{\cal K}^0 \ {\rm mixing}$$

Even with $\gamma \sim \sin heta_c \sim 10^{-2}$, the bound is $\Lambda_{
m ETC} > 1000~{
m TeV}$

OK for light fermions. But for $m_c \simeq 1$ GeV, we need

$$m_f \sim \beta N_T rac{\Lambda_{
m TC}^3}{\Lambda_{
m ETC}^2}$$

If $\beta \sim {\it O}(1)$ and $\Lambda_{\rm TC} \sim {\it O}(1)$ TeV $\Rightarrow \Lambda_{\rm ETC} \sim$ 30 TeV

< 日 > < 同 > < 三 > < 三 >

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Solutions to TC/ETC Flavor Problem

• <u>Techni-GIM Models</u>:

- $\bullet\,$ Assume ETC gauge are degenerate $\Rightarrow\,$ GIM
- One ETC gauge group per hypercharge *ETC_L*, *ETC_U*, *ETC_D*.
- Fermion masses come from small breakings of large global symmetry
- Walking TC:

Near conformal behavior of TC between ETC and TC scales, enhances $\langle\bar{F}_L F_R\rangle$

- 4 同 ト 4 ヨ ト 4 ヨ ト

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Walking Technicolor

Fermion masses from ETC

$$m_f \sim \beta N_T rac{\langle ar{F}F
angle}{\Lambda_{
m ETC}^2}$$

Need to keep Λ_{ETC} high, but enhance m_f . How? Enhance $\langle \bar{F}F \rangle$

 \bullet Running effects between $\Lambda_{\rm TC}$ and $\Lambda_{\rm ETC}$

$$\langle \bar{F}F \rangle_{ETC} = \left(e^{\int_{\Lambda_{\rm TC}}^{\Lambda_{\rm ETC}} \frac{d\mu}{\mu} \gamma(\mu)} \right) \langle \bar{F}F \rangle_{TC}$$

with anomalous dimension $\gamma(\mu) = \gamma(\alpha(\mu))$.

< 日 > < 同 > < 三 > < 三 >

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Walking Technicolor

If TC is QCD-like:

$$\gamma(\mu) \sim \alpha(\mu) \sim rac{c}{\ln \mu} \quad ext{and} \quad c \lesssim O(1)$$

which gives

$$\langle \bar{F}F \rangle_{ETC} \simeq \left[\ln \left(\frac{\Lambda_{\rm ETC}}{\Lambda_{\rm TC}} \right) \right]^c \langle \bar{F}F \rangle_{TC}$$

< 日 > < 同 > < 三 > < 三 >

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Walking Technicolor

But if TC is close to a conformal fixed point with

 $\alpha(\mu) \sim \alpha^* = \text{constant}$

then $\gamma(\mu)$ is constant and the enhancement is

$$\langle \bar{F}F \rangle_{ETC} \simeq \left(\frac{\Lambda_{\rm ETC}}{\Lambda_{\rm TC}} \right)^{\gamma} \langle \bar{F}F \rangle_{TC}$$

Enhances m_{f} keeping $\Lambda_{\rm ETC}$ high. E.g. for $\gamma \sim 1$

$$m_f \simeq \beta N_T \frac{\Lambda_{\rm TC}^2}{\Lambda_{\rm ETC}}$$

 \Rightarrow O(1) GeV masses are OK. But top quark too heavy for WTC

- 4 周 ト 4 戸 ト 4 戸 ト

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Top Condensation – Topcolor

• Top Condesation: New interaction leads to

 $\langle {ar t t}
angle
eq 0$

Breaks EW symmetry, gives dynamica mass to top

- But, to get m_t right $\Lambda \sim 10^{15}$ GeV Or if $\Lambda \sim 1$ TeV $\Rightarrow m_t \simeq 600$ GeV
- Topcolor-assisted Technicolor:
 - TC breaks (most of) EW symmetry
 - ETC gives masses up to O(1) GeV
 - Topcolor interaction $\Rightarrow \langle \bar{t}t \rangle \neq 0$, responsible for m_t .

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Top Condensation – Topcolor

- Top See-saw:
 - Topcolor + Singlet fermion without TC
 - χ_L and χ_R have quantum numbers of t_R

$$(\bar{t}_L \bar{\chi}_L) \left(\begin{array}{cc} m_{tt} & m_{t\chi} \\ m_{\chi t} & m_{\chi\chi} \end{array} \right) \left(\begin{array}{c} t_R \\ \chi_R \end{array} \right)$$

• m_{tt} and $m_{t\chi}$ dynamically generated via condensates $m_{t\chi} \sim 600$ GeV. The seesaw results in

$$m_t \simeq rac{m_{t\chi} m_{\chi t}}{m_{\chi\chi}}$$

OK if $m_{\chi t}/m_{\chi\chi}~\lesssim~0.3$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

TC and Precision Bounds

Electroweak Precision Constraints

• E.g. Techni-fermions give

$$S \sim \frac{N}{6\pi}$$

But

$$S^{exp.} \leq 0.1$$

э

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Strong Dynamics and AdS/CFT

AdS/CFT Correspondence (Maldacena):

• Originally:

 $\mathsf{AdS}_5 \times \mathit{S}^5$ String Theory $\leftrightarrow \mathcal{N}=4$ 4D SU(N) Theory (CFT)

- In general: Assume 5D theory in AdS₅ ↔ 4D CFT (Arkani-Hamed, Porrati, Randall)
- Need

$$g^2 N \gg 1$$

to ignore string corrections.

ullet \Rightarrow Holographic dual is 4D strongly coupled theory

< 日 > < 同 > < 三 > < 三 >

The Example from QCD QCD-like Strong Dynamics A New View of Strong Dynamics: the AdS/CFT Correspondence

Strong Dynamics from a Slice of AdS₅

Ingredients to build Strongly Coupled Theories in AdS₅

- UV cutoff in the 4D Theory \leftrightarrow UV ("Planck") boundary
- Break 4D Conformal Invariance in the IR \leftrightarrow IR boundary
- 4D Strongly Coupled Gauge Theory described by 5D Weakly Coupled Theory

< 日 > < 同 > < 三 > < 三 >

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Solving the Hierarchy Problem in AdS₅

Metric in extra dimension \Rightarrow small energy scale from M_P (Randall-Sundrum)

$$ds^2=e^{-2\kappa|y|}\,\eta^{\mu
u}dx_\mu dx_
u-dy^2$$

Corrections to m_h OK If Higgs close to TeV brane

Need Higgs IR localization

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Natural EWSB

If the Higgs is localized at (or near) the TeV brane $(y = \pi R)$

$$S_{H} = \int d^{4}x \int_{0}^{\pi R} dy \sqrt{-g} \,\delta(y - \pi R) \left[g_{\mu\nu} \partial^{\mu} H^{\dagger} \partial^{\nu} H - \lambda \left(|H|^{2} - v_{0}^{2} \right)^{2} \right]$$

Even if $v_0 \simeq M_{\text{Planck}}$, the v.e.v. (and mass) of the physical Higgs is

 $v = e^{-k\pi R} v_0$

To solve the hierarchy problem need Higgs localization.

(日) (同) (日) (日) (日)

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Bulk AdS₅ Models

Allowing Gauge and Matter fields in 5D bulk (Gherghetta-Pomarol, Grossman-Neubert)

- Avoid effects of Higher Dimensional Operators only suppressed by IR/TeV scale
- Natural Models of Flavor: Zero-mode fermion localization ↔ fermion mass

$$M_f^{(5D)} = ck, \quad c \simeq O(1)$$

同 ト イ ヨ ト イ ヨ ト

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Flavor in Warped Extra Dimensions

● Fermion *bulk mass* ⇒ zero-mode localization:

$$M_f = c k, \qquad c \sim O(1)$$

• The zero-mode fermion wave-function is

$$F_{\rm ZM}^{L}(y) = \frac{1}{\sqrt{2\pi R}} f_0^{L}(0) e^{(\frac{1}{2} - c_L) ky}$$

• If $c_L > 1/2 \Rightarrow$ fermion localized near y = 0, Planck brane. If $c_L < 1/2 \Rightarrow$ fermion localized near $y = \pi R$, TeV brane.

・ 同 ト ・ ヨ ト ・ ヨ ト

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Fermion Masses in Bulk RS Models

• *O*(1) flavor breaking in bulk can generate fermion mass hierarchy:

TeV localization \rightarrow larger Yukawas, Planck localization \rightarrow suppressed Yukawas.

• Heavier fermions couple stronger to gauge KK modes:

- $G^{(1)} \rightarrow t\bar{t}$ dominates
- Tree-level flavor violation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

The Bulk RS Picture

Models of EWSB *and* Flavor

→ Ξ →

• EWPC: T OK, but $S \simeq N/\pi$ at tree-level

 $M_{KK} \gtrsim (2-3) {
m TeV}$

- $Z \rightarrow \overline{b}b$ require discrete symmetry ($L \leftrightarrow R$) (Agashe, Contino, Da Rold, Pomarol)
- Potentially important bounds and/or effects from flavor violation

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Dynamical Origin of the Higgs Sector

What localizes the Higgs to/near the IR/TeV brane ?

- Gauge-Higgs Unification
- Zero-mode Fermion Condensation
- Higgsless

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

EWSB from Fourth-Generation in AdS₅

Top-condensation models (Nambu; Bardeen, Hill, Lindner): EWS broken by $\langle \bar{t}t \rangle \neq 0$

- Top quark is too light: $m_t \sim 600$ GeV if $\Lambda \sim O(1)$ TeV. Or $\Lambda \sim 10^{15}$ GeV if $m_t \sim 200$ GeV.
- \Rightarrow Heavy fourth generation $M_4 \sim 600$ GeV.
- Problems:
 - All of 4th Gen must condense, but What's the underlying interaction ?
 - Fermion masses ?

伺 ト イヨト イヨト

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Fermion Condensation

Fourth-Generation Condensation in AdS₅ (G.B. Da Rold)

- $\bullet\,$ Fourth Generation in the AdS_5 bulk
- $\bullet\,$ Choose zero-mode fermions IR localized \Rightarrow strongly coupled to KK gauge bosons

- E.g. KK gluon exchange $\longrightarrow \langle \bar{\boldsymbol{U}} \boldsymbol{U} \rangle \neq 0$
 - EWSB
 - $m_U^{(0)} \sim (600 700)$ GeV (ala Bardeen-Hill-Lindner)
 - Heavy Higgs: $m_h \simeq (600 900)$ GeV

・ロト ・四ト ・ヨト ・ ヨト

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

EWSB from Fourth-Generation in AdS₅

If
$$g_U > g_U^{ ext{crit.}}$$
, $\Rightarrow \langle \bar{U}_L U_R
angle
eq 0$

 \Rightarrow Solution to the gap equation:

This implies

- Electroweak Symmetry Breaking
- Dynamical m_U

We can also write an effective theory at low energy for the Higgs.

- A 🗄 🕨

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Fermion Condensation (cont.)

• All other fermion masses: Bulk higher dimensional operators

$$\frac{C^{ijk\ell}}{M_P^3} \bar{\Psi}_L^i(x,y) \Psi_R^j(x,y) \bar{\Psi}_R^k(x,y) \Psi_L^\ell(x,y)$$

- Phenomenology dominated by 4th generation
 - $V^{(1)} \rightarrow \overline{U}U$ (broader KK gauge bosons)
 - Flavor physics: E.g. new sources of CPV in mixing,
 - Additional contributions to S, T

- 4 同 ト 4 ヨ ト 4 ヨ ト

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Higgsless Models

Higgsless RS Bulk Models (Csaki, Grojean, Murayama, Pilo, Terning)

- Boundary Condition breaking $SU(2)_L \times SU(2)_R \times U(1)_X \rightarrow U(1)_{EM}$
- IR localized mass terms \Rightarrow fermion masses
- Kaluza-Klein modes of gauge fields unitarize amplitudes. \Rightarrow KK modes "light": $M_{KK} \lesssim 1$ TeV
- Phenomenology in the Gauge boson sector:
 - $V_L V_L$ scattering
 - Sum Rules
- Corresponds to Walking Technicolor Models

ロト (得) (手) (日)

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Higgsless EWSB in AdS₅

Break EWS by Boundary Conditions (Csaki, Grojean, Pilo, Terning)

- BCs on branes \Rightarrow $SU(2)_L \times SU(2)_R \times U(1)_X \rightarrow U(1)_{\rm EM}$
 - TeV brane: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$: Preserves custodial symmetry.
 - Planck brane: $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$: Allows fermion mass terms on TeV brane.
- Z and W are KK modes. $ho \sim 1$
- Fermion masses:
 - vector-like mass terms on TeV brane.
 - Isospin symmetry broken on Planck brane.
 - E.g.: top quark is TeV-brane localized ⇒ larger mass (larger overlap with chiral-symmetry breaking).

・ロト ・同ト ・ヨト ・ヨト

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Higgsless EWSB in AdS₅

EWPC:

- S parameter is large
- S can be made small by de-localizing fermions
- $Z \rightarrow b_L \bar{b}_L$ requires protective symmetry. Still, deviates some from data

同 ト イ ヨ ト イ ヨ ト

Solving the Hierarchy Problem in AdS_5 Models of EWSB and Fermion Masses in AdS_5

Higgsless EWSB in AdS₅

Signals:

- Unitarization of *WW*, *WZ*, ... scattering done by KK resonances
- Couplings of V⁽ⁿ⁾'s to W[±] and Z must satisfy sum rules (to cancel E², E⁴ behavior). E.g. for WW → WW :

$$g_{WWWW} = g_{WWZ}^2 + g_{WW\gamma}^2 + \sum_n (g_{WWV^{(n)}})^2$$
$$= \frac{3}{4M_W^2} \left[g_{WWZ}^2 M_Z^2 + \sum_n (g_{WWV^{(n)}})^2 M_n^2 \right]$$

• KK gauge bosons \Rightarrow narrow resonances, lighter ($M_{V^{(1)}} \lesssim 1$ TeV) than in Techni-color or other strongly coupled models.

Summary/Outlook

<ロ> <同> <同> < 同> < 同>

æ

Summary/Outlook

• TeV Scale could be a window to new strong interactions

< 日 > < 同 > < 三 > < 三 >

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor

- 4 同 6 4 日 6 4 日 6

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory
- Models and Signals defined by mechanism of Higgs localization, flavor

Summary/Outlook

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory
- Models and Signals defined by mechanism of Higgs localization, flavor
- If LHC reveals Strongly Coupled TeV scale
 ⇒ Model Building in AdS₅ should be a useful tool